Development of a Cryptosporidium-arsenic multi-risk assessment model for infant formula prepared with tap water in France

Boue, G.; Wasiewska, L. A.; Cummins, E.; Antignac, J. P.; Bizec, B. le; Guillou, S.; Membre, J. M.

Food Research International, 108 558-570; 10.1016/j.foodres.2018.03.0542018

Abstract

Tap water is used in France to reconstitute powder infant formula, although it is not sterile and possibly contaminated by microbiological and chemical hazards. The present study aims to quantify risks of using tap water in France for the preparation of infant formula, during the first six months of life.

Cryptosporidium and arsenic were selected as hazards of greatest concern in microbiology and chemistry, respectively. A probabilistic model was developed using French (when available) and European (alternatively) data. Second order Monte Carlo simulation was used to separate uncertainty and variability of inputs. Outputs were expressed at the individual level as probability of illness and at the population level, using a common metric, the DALY (Disability Adjusted Life Year). Two scenarios of milk preparation were considered: with un-boiled or boiled tap water.

Consuming infant formula rehydrated with un-boiled tap water during the first six months of life led to a total of 2250 DALYs per 100,000 infants (90% uncertainty interval [960; 7650]) for Cryptosporidium due to diarrhea, and 1 DALY [0.4; 2] for arsenic due to expected lifetime risk of lung and bladder cancer as a result of early exposure in life. For the entire population, boiling water would suppress the risk from Cryptosporidium. In contrast, the incremental cancer risk was low at the population level but elevated for 5% of the population exposed to high levels of arsenic. A stringent monitoring of tap water supply points should be continued. This multi-risk assessment model could help public health authorities and managers in evaluating both microbiological and chemical safety issues associated with using infant formula prepared with tap water.

https://www.sciencedirect.com/science/article/pii/S0963996918302382?via%3Dihub

Leave a Reply

Your email address will not be published. Required fields are marked *